Non-linear model for absorption in SiO$_2$ optical fibres: Transport of concentrated solar energy

O.A. Jaramillo*, J.A. del Río, G. Huelsz

Centro de Investigación en Energía. AP 34, CP 62580 Temixco, Morelos, Mexico

Received 12 January 2000

Abstract

In order to determine the maximum solar energy than can be transported using SiO$_2$ optical fibres, analysis of non-linear absorption is required. We propose a model based on Maxwell's equations and the Drude–Lorentz theory to determine the non-linear absorption for the maximum possible concentration ratio for circular concentrators. The relation between the electric susceptibility and the refractive index with microscopic parameters is provided. To solve the non-linear model for absorption experimental parameters are used. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO$_2$ is $k_2 = 10^{-29}$ m2 V$^{-2}$. With this result we conclude that the non-linear part of the absorption coefficient of SiO$_2$ optical fibres during the transport of concentrated solar energy achieved by a circular concentrator is negligible. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: SiO$_2$ Optical fibres; Non-linear absorption; Non-linear extinction; Concentrated solar energy transport

*Corresponding author.
E-mail address: ojs@mazatl.cie.unam.mx (O.A. Jaramillo).

0927-0248/00/$-$ see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0927-0248(00)00218-X